DHI Researches Sediment Spills (Singapore)

dfg

DHI, an independent, international consulting and research organisation with an objective to advance technological development and competence within the fields of water, environment and health, is constantly looking for ways and means to mitigate the effects of human activities on water environments.

Coastal development often involves intensive dredging work. This, in turn leads to sediment spills, which have adverse impacts on the ambient environment. DHI is currently working on a new project – taking measurements of the marine environment and conducting laboratory experiments to measure the optical effects of dredging work. In doing so, they hope to improve the ability of their computer models to predict possible effects of dredging spills on the marine environment around Singapore.

The aim of this project is twofold: 1) to develop a light model for tropical waters and 2) to validate and optimise the model by testing it on field data.

One of the most significant impacts of dredging activities worldwide is the reduced light availability for photosynthesis and growth of pelagic and benthic plants & corals. DHI’s ability to make reliable predictions of the impact of dredging depends on two things – reliable modelling of light attenuation and the response of primary producers to reduced light. The attenuation of light is the combined effect of two processes in the water column – namely the scattering of light and the absorption of light. The combined effect of scatter and absorption of suspended particles on light attenuation varies between and within coastal areas, shelf and offshore seas. In an earlier project, DHI developed a light attenuation model based on optical properties (absorption and scatter) of chlorophyll, detritus, dissolved organic matter and including four size classes of inorganic suspended solids.

The current project activities are based on the same principles and involve the following:

– Experiments, field sampling and optimisation of EcoLab equations to share knowledge and initiate collaboration about light modelling.

– From these experiments, absorption and scatter of sediments will be obtained. The resulting specific attenuation coefficients will be implemented in the EcoLab light equation.

– Collection of data from monitoring stations to optimise and validate the description.

The final result will be a comparison of modelled and measured light attenuations.

Subsea World News Staff, August 27, 2012

Share this article

Follow Subsea World News

Events>

<< May 2015 >>
MTWTFSS
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Offshore Well Control 2015

Safety Culture: Access innovative case studies on safety culture and leadership to ensure quality control, risk mitigation and process…

read more >

Fundamentals of Offshore Field Development

The course delivers the detailed knowledge required, along with management strategies, for you to successfully engage in the sector…

read more >

Fundamentals of Subsea Integrity & Reliability

The course is delivered by distance learning so it does not disrupt your work or home life, and is an invaluable introduction to this vital…

read more >

Pipeline Engineering, Construction and Operations

Pipelines are generally the most economical way to transport large quantities of liquids and gases over land and below the sea, such as oil…

read more >