Hydrokinetic Energy Technologies Move to Commercial Development (USA)

Hydrokinetic Energy Technologies Move to Commercial Development (USA)

New hydrokinetic energy technologies that generate electricity by harnessing the energy from ocean waves, tides, and river currents are advancing toward commercial development in the United States.

They are not expected to add major power supplies anytime soon, but federal regulators this year approved licenses for two hydrokinetic energy projects to produce electricity from wave power buoys anchored off the Oregon coast and from underwater turbines driven by the current in New York City’s East River.

Hydrokinetic energy is still in its infancy in the United States. Current prices make hydrokinetic energy expensive compared to other fuels for power generation. However, backers of the technology claim river currents and ocean tides are more predictable, sometimes known months in advance, for generating electricity compared to intermittent energy sources such as wind and solar. Various hydrokinetic technologies are available, including:

– Wave power buoys capture the energy in the up-and-down movement of waves generating power that is transmitted by an underwater cable to the electric grid onshore. There are several types of buoys under development.

– Underwater turbines use water currents to spin underwater blades and generate electricity. Unlike conventional hydroelectric turbines that rely on dams or diversions to direct water flow, these technologies rely on the unconstrained currents found in rivers, tidal areas, or the open ocean.

– Tidal power harnesses water flowing between low and high tides, turning a turbine to generate power. There are only 40 sites known in the world that have the required difference in water levels between tides needed to produce electricity.

Verdant Power’s Roosevelt Island Tidal Energy Project, approved by the Federal Energy Regulatory Commission (FERC) in January 2012, plans to install up to 30 three-blade hydrokinetic generators on the bottom of New York City’s East River to produce about 1 megawatt of electricity, enough to power around 800 homes. After initial problems resulting from strong river currents, the company has successfully tested new blades made of plastic and fiberglass.

Ocean Power Technologies’ Reedsport Wave Park power station, approved by FERC in August, will consist of up to ten large buoys that collectively could generate 1.5 megawatts (MW) of electricity from the movement of waves. The power wave station will be located 2.5 miles off the Oregon coast and will be connected to the electric grid by an underwater cable. Construction of the initial buoy is nearing completion and is expected to be ready for deployment later this year.

While U.S. hydrokinetic projects are small — dwarfed by the 77,000 MW of existing conventional hydroelectric generating capacity — the sector is developing. So far, FERC has issued 93 preliminary hydrokinetic energy project permits. In July 2012, FERC and the Department of the Interior’s Bureau of Ocean Energy Management updated their agreement to streamline the process for licensing and regulating wave and ocean current energy projects.

Other countries have tapped hydrokinetic energy for years, although some of the technology used is not as advanced as what is being tried in the United States. The 240 MW La Rance barrage dam in France was the world’s first tidal power station. Opened in 1966, the plant has 24 turbines that generate electricity when the tide goes in or out. The Sihwa Lake Power Station in South Korea began operating last year and is the world’s largest tidal power station, with a generating capacity of 254 MW. There is also the Annapolis power plant at the Bay of Fundy in Canada that was built in 1984 and generates 20 MW of electricity from the Bay’s record 43-foot tides.

More advanced technology used internationally includes the Pelamis “sea snake,” an offshore machine consisting of five tube sections that float on the ocean surface and use the motion of waves to generate electricity (see images above). When the tube sections flex, hydraulic arms move in opposite directions and turn a generator that produces power. Sea snakes are being tested in Scotland and Portugal.

The U.S. Department of Energy has a database that tracks hydrokinetic energy projects in various stages of development around the world.

Press Release, October 03, 2012

Share this article

Follow Subsea World News

Events>

<< Feb 2016 >>
MTWTFSS
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 1 2 3 4 5 6

FPSO Europe Congress

 

Pursuing Cost-Optimization & Project Excellence across Europe’s FPSO Value Chain!

Launched to great success in 2015, the FPSO Europe Congress is set to return on 24-25 February 2016 in London for yet another exciting gathering of Europe’s leading oil operators, FPSO contractors, EPCs, shipyards and solution providers to discuss the most topical and critical FPSO developments in the North Sea, Latin America, Brazil and West Africa market.

 

Why Attend the 2nd Annual FPSO Europe Congress?

  • Discover how FPSO leaders are embracing the new realities of a low oil price environment – what are the strategies to adopt in pursuit of viable economical FPSO projects?
  • Brainstorm with industry experts on innovative FPSO engineering, construction and technology breakthroughs leading to significant CAPEX and OPEX savings
  • Review, refine and optimize your existing FPSO operations – how can we enhance oil recovery and extend FPSO asset lifetime?
  • Learn from FPSO experts on the ins-and-outs of delivering successful FSPO projects in North Sea, West Africa, Latin America and Brazil – how can we comply with local content and form effective native partnerships?
  • Engage and form sustainable partnerships with European-based oil companies and FPSO contractors that are leading offshore E&P and FPSO projects in the region

 

2016 FPSO Distinguished Speakers Include:

  • Curtis Lohr, Stones Project Manager, Shell
  • David Hartell, Senior Development Manager, Premier Oil
  • Terry Hughes, Project Director, Tullow Oil
  • Sid Sircar, Facilities Delivery Manager – Catcher Development, Premier Oil
  • Michael Wyllie, Group Technology Director, SBM Offshore
  • Chris Brett, President, Teekay Offshore
  • Puneet Sharma, Vice President, MODEC
  • Eirik Barclay, CEO, Yinson Production

 

The FPSO Europe Congress 2016 is proud to bring you an updated program offering fresh perspectives, creative solutions and critical market intelligence fundamental to FPSO business sustainability as we discuss just HOW and WHAT you can do in pursuit of a viable, efficient and safe FPSO strategy.

For more information please visit the website at http://goo.gl/uvYsrk or email rani.kuppusamy@fpsonetwork.com

 

read more >

Topsides Platforms & Hulls

Topsides, Platforms & Hulls Conference & Exhibition is the offshore industry’s only event dedicated to the topsides, platforms and hulls…

read more >

The 16th North Sea Decommissioning Conference

The 2016-programme has been composed to shed light on the effect of the current low oil-price environment on the decommissioning market…

read more >

Substructures for UK Offshore Wind

Design, construction and installation

Optimising offshore substructures is one of the key challenges for reducing LCOE. Foundation designers have produced a variety of different solutions: monopiles, GBS, jackets, suction buckets and floating foundations. Looking at U.K. projects – different soils, water depths,fabrication timelines and installation challengescreate many questions for the industry to solve. We’re entering uncharted territory; projects arelarger, farther and more complex than ever completed.

Now is the time to have a close look at lessons learnt and define the room for improvement for the U.K. wind industry.

More Info

read more >